

Your Energy Audit

munihelps.org/rebates-incentives/holyoke-

Home

TEST SITE 123 ABC St. Holyoke, MA 01040 (123) 456-7890 guy@sesamest.org

Audit Date

May 5, 2020 02:00 PM

Audited By

Jamie Overby

jamie.overby@ cetonline.org

Center for EcoTechnology

320 Riverside Dr. 1-A Northampton, MA 01062 8:30AM - 5:00PM Monday -Friday

Phone Assistance:

(888) 333-7525

Hello!

Thank you for showing me around your house the other day. I was able to identify some great energy savings opportunities to help save you money and increase the over all comfort in your home throughout the seasons. If you have any questions, don't hesitate to reach out to us at 1-888-333-7525.

Thanks!

Inside Your Report	
<u>Cover</u>	1
<u>Concerns</u>	2
Energy Use	3
<u>Solutions</u>	4
<u>Upgrade Details</u>	6
<u>Health & Safety</u>	24
Rebates & Incentives	25
<u>Tech Specs</u>	28
<u>Glossary</u>	31

We listened to you!

As our client, we want to make sure we are addressing all of your concerns for your home. If we have missed any concerns in this report, please let us know right away.

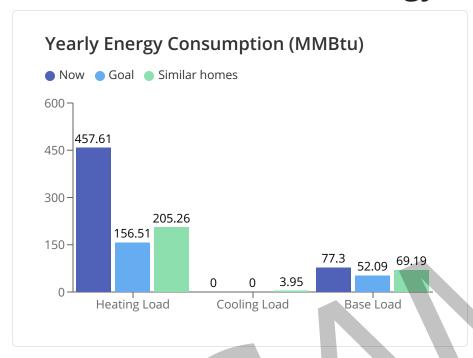
Concerns

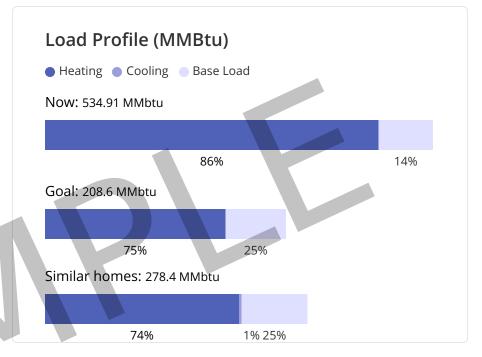
House feels drafty

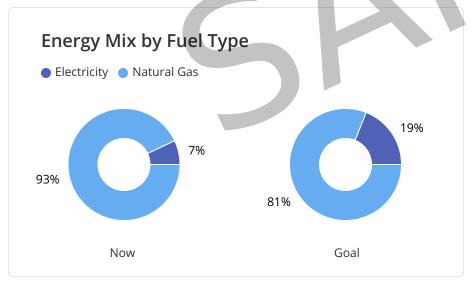
Home feels drafty in the living room and the bedrooms. Homeowner believes the cause is the windows. After further inspection, there is no insulation in the walls and that is a bigger problem than the windows.

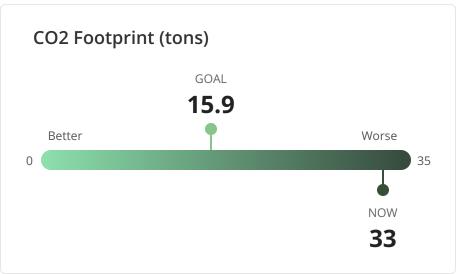
Street is noisy

Homeowner can clearly hear the traffic noise from the busy highway outside. Some of the occupants use earplugs to sleep at night. Again, wall insulation will go a long way to alleviating this problem.


Heating bills too high


Homeowner feels that heating bills are much higher than their previous home and is concerned that they're much higher than they should be.





Your Energy Use

Totals

Approximate Cost

\$ 49,400

This is a ballpark guess. Ask your contractor for a detailed bid.

Estimated Savings

\$3,935 per year

This is an estimate of how much you could save starting in Year 1. Savings will only increase as energy prices rise over the years.

Savings to Investment Ratio*

For Package: 1.4

Impact of upgrades

road

Energy Reduction 61%
Carbon (CO2) 17 tons
Savings
Equivalent cars 3.5/yr
removed from the

Solutions for Your Home

Call us today at (888) 333-7525 to ask a question or discuss the next step!

DETAILS	APPROXIMATE INSTALLED COST	APPROXIMATE ANNUAL SAVINGS	SIR *
Upgrade Lighting	\$ 0	\$ 50	100
Lower Hot Water Temp	\$0	\$ 141	100
Upgrade Clotheswasher	\$ 500	\$ 114	3.4
Thermostat Set Points	\$ 0	\$ 673	100
Upgrade Heating System	\$ 3,700	\$ 1,189	4.9
Insulate Walls	\$ 7,500	\$ 716	1.9
Upgrade Pool Pump	\$ 1,700	\$ 204	1.8
Insulate Attic	\$ 3,000	\$ 253	1.7
Seal Air Leaks	\$ 1,600	\$ 310	3
Replace Freezer	\$ 500	\$ 22	0.7
Upgrade Windows	\$ 20,800	\$ 437	0.4
Insulate Frame Floor	\$ 400	\$ 15	0.8

^{*} SIR is the Savings to Investment Ratio. Simply put, if the SIR is 1 or greater, then the energy savings from the item will pay for itself before it needs to be replaced again. This metric is used to help prioritize the recommendations by financial merit.

Totals

Approximate Cost

\$ 49,400

This is a ballpark guess. Ask your contractor for a detailed bid.

Estimated Savings

\$3,935 per year

This is an estimate of how much you could save starting in Year 1. Savings will only increase as energy prices rise over the years.

Savings to Investment Ratio*

For Package: 1.4

Impact of upgrades

Energy Reduction 61%

Carbon (CO2) 17 tons

Savings

Equivalent cars 3.5/yr

removed from the

road

...CONTINUED

Solutions for Your Home

Call us today at (888) 333-7525 to ask a question or discuss the next step!

DETAILS	APPROXIMATE INSTALLED COST	APPROXIMATE ANNUAL SAVINGS	SIR *
Replace Refrigerator	\$ 1,000	\$ 52	0.8
Upgrade Dishwasher	\$ 500	\$ 45	1.5
Replace Doors or Add Storm Doors	\$ 800	\$ 34	1
Seal & Insulate Duct work	\$ 5,000	\$ 242	0.7
Upgrade Water Heater	\$ 2,400	\$ -562	0

^{*} SIR is the Savings to Investment Ratio. Simply put, if the SIR is 1 or greater, then the energy savings from the item will pay for itself before it needs to be replaced again. This metric is used to help prioritize the recommendations by financial merit.

LIGHTING

Approximate installed cost

\$0

Annual Energy Savings

Approx. \$50

Savings to Investment Ratio

100

Why it matters

Light Emitting Diode (LED) bulbs use 12% of the energy of regular incandescent light bulbs and last up to 50 times as long. Replacing incandescent bulbs with LEDs will save significant energy and replacement costs over time.

Upgrade Lighting

Replace incandescent light bulbs that are used more than an hour per day with LEDs can save you money!

Now & Goal

NOW **DETAILS** GOAL Lighting # of CFLs # of LEDs 38 # of Incandescents 62 62

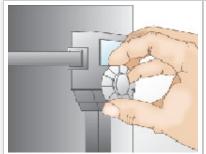
HOT WATER TEMPERATURE

Approximate installed cost

\$0

Annual Energy Savings

Approx. \$141


Savings to Investment Ratio

100

Why it matters

Set water heater to deliver at 122 F (use a cooking thermometer to test the temperature at the faucet) or the lowest practical setting for your preferences. A good measure is if you can take a shower using only hot water (not adding cold water), but still above 122 F. This will reduce standby energy loss and risk of scalding.

Lower Hot Water Temp

in demand losses.

Savings resulting from turning down your water heater temperature are based on two components: reduced standby losses, and consumption (from water demand or use in your home). Set too high, or at 140°F, your water heater can waste anywhere from \$36 to \$61 annually in standby heat losses and more than \$400

Now & Goal

DETAILS NOW GOAL

Hot Water Temperature

Water Heater 1

Temp 155 °F 120 °F

CLOTHESWASHER

Approximate installed cost \$500

Annual Energy Savings Approx. \$114

Savings to Investment Ratio

3.4

Why it matters

Old clothes washers can be energy and water hogs. When your current clothes washer breaks or otherwise needs to be replaced, be sure to choose a front loading ENERGY STAR model with the highest Modified Energy Factor (MEF) that's within your budget.

Upgrade Clotheswasher

When it is time to upgrade your clothes washer, consider replacing it with an Energy Star refrigerator which will run more efficiently and save you money!

Now & Goal

NOW **GOAL DETAILS**

Clotheswasher

Туре	Top Load	Top Load
ENERGY STAR	No	Yes
Integrated Modified Energy Factor	0.64 IMEF	1.03 IMEF
Model Year		2020

THERMOSTAT

Approximate installed cost

\$0

Annual Energy Savings

Approx. \$673

Savings to Investment Ratio

100

Why it matters

Installing a programmable thermostat (or correctly setting the one you currently have) will help you to use less energy when you're not at home or when you're sleeping.

Thermostat Set Points

Replace your manual thermostat with a programmable one like this one or if you already have a programmable thermostat, be sure it is programmed correctly.

Now & Goal

DETAILS		NOW	GOAL
Thermostat			
Heating Setpoint High		74 °F	68 °F
Heating Setpoint Low		62 °F	62 °F
Cooling Setpoint High			85 °F
Cooling Setpoint Low			80 °F

HEATING SYSTEM

Approximate installed cost \$3,700

Annual Energy Savings Approx. \$1,189

Savings to Investment Ratio

4.9

Why it matters

Install a more efficient furnace, boiler or heat pump. Depending on the age of the unit, substantial savings may be gained by replacing it with an ENERGY STAR rated appliance. If you're heating with gas, look for a sealed combustion unit. They're much safer since the exhaust pathway from the unit is sealed and goes directly outside. If it doesn't quite make sense to replace your heating system now, be prepared to replace it with a high efficiency ENERGY STAR unit when it finally wears out.

Upgrade Heating System

Consider upgrading your heating system to a high efficiency unit.

Now & Goal

NOW **GOAL DETAILS**

Heating System

Hvac System 1		
System Name	Hvac System 1	
Equipment Type	Furnace with standalone ducts	
Upgrade action	Replace with a newer model	
% of Total Heating Load	100%	100%
Heating Energy Source	Natural Gas	Natural Gas
Heating Capacity	100000 BTU/h	100000 BTU/h
Heating System Efficiency	72 AFUE	95 AFUE
Heating System Model Year	1985	2020

WALLS

Approximate installed cost

\$7,500

Annual Energy Savings

Approx. \$716

Savings to Investment Ratio

19

Why it matters

Insulating your walls can lead to a significant reduction in utility bills. The is done by drilling small holes in the wall cavities either from the inside or outside and filling the space with cellulose, fiberglass, or even foam insulation. If it's time to replace your exterior siding, then be sure to ask your contractor about adding a layer of rigid foam underneath the new sheathing of 1" or more.

Insulate Walls

By "dense packing" cellulose insulation in your wall cavities, air leaks and drafts will be dramatically reduced. To install the insulation, contractors will lightly pry up a few rows of siding of on your house and temporarily remove it. They will then drill a 2" hole in the sheathing for every wall cavity. A blower pushes cellulose

insulation at high speed through a hose into the holes, filling the wall cavity. Great care is taken to ensure the cellulose fills into every part of the wall.

Now & Goal

DETAILS	NOW	GOAL
Walls		
Wall 1		
Modeled Area	3400 ft ²	3400 ft ²
Siding	Other	
Construction	2x4 Frame	
Cavity Insulation		13 R Value

Continuous Insulation

POOL PUMPS

Approximate installed cost

\$1,700

Annual Energy Savings

Approx. \$204

Savings to Investment Ratio

1.8

Why it matters

Single-speed pool pumps can often equate to half of an entire home's electricity demand. Substantial energy savings can be achieved by replacing it with a variable speed pool pump. An ENERGY STAR certified pool pump can run at different speeds and be programmed to match the pool operation with its appropriate pool pump speed. The energy saved is considerable; reducing pump speed by one-half allows the pump to use just one-eighth as much energy.

Upgrade Pool Pump

Replace single-speed pool pump with a variable-speed pool pump for greater energy savings.

Now & Goal

DETAILS NOW GOAL

Pool Pumps

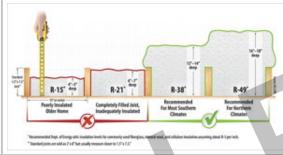
Pump Type	Single Speed	Variable Speed
Size	18000 Gallons	
Pump Horsepower	0.5	1.5
Pump Annual Frequency	365 Days/Year	365 Days/Year
Pump Daily Frequency	4.6 Hours/Day	8 Hours/Day
Variable Speed Turnover	1	1
Pump Model		2020

ATTIC

Approximate installed cost \$3,000

Annual Energy Savings Approx. \$253

Savings to Investment Ratio


1.7

Why it matters

Adding insulation to your attic can lead to a significant reduction in your utility bills. This process is often combined with careful air sealing of the ceiling from the attic side to ensure the new insulation performs at its maximum level.

Insulate Attic

Having the correct amount of attic insulation can help you maintain a comfortable temperature throughout your home and help save money on your energy bills,

GOAL

NIOW

plus, prevent major issues like ice dams in the winter.

Now & Goal

DETAILS	NOW	GUAL
Attic		
Attic 1		
Modeled Area	1850 ft²	1850 ft ²
Insulation	12.5 R Value	49 R Value
Radiant Barrier?	No	No
Has Knee Wall?	Yes	No
Knee Wall Area	600 ft ²	
Knee Wall Cavity Insulation	7 R Value	
Cool Roof?	No	No

AIR LEAKAGE

Approximate installed cost \$1,600

Annual Energy Savings
Approx. \$310

Savings to Investment Ratio

3

Why it matters

Air sealing is typically the most cost effective improvement you can make to your home. To properly seal out air leaks, a large fan called a blower door is used to depressurize your house. This makes air leaks easy to find, so corrective measures can be taken. A good air sealing job will dramatically increase the comfort of your home and help you save significant energy.

Seal Air Leaks

Good air-sealing and a continuous air barrier between the attic and the home's conditioned (living) space are important, not only to save energy and reduce fuel bills, but also to prevent moisture problems in the attic.

Now & Goal

DETAILS NOW GOAL

Air Leakage

Blower Door Test Performed	Estimate	Estimate
Blower Door Reading	13680 CFM50	10260 CFM50
Conditioned Air Volume	31450 ft ³	
Wind Zone	2	
N-Factor	14.99	
Equivalent NACH	1.74 NACH	1.31 NACH
Effective Leakage Area	768.53 in ²	576.4 in ²
Equivalent ACH50	26.1 ACH50	19.57 ACH50
Kitchen Fan		
Bathroom Fan 1		
ASHRAE 62.2 Required mechanical ventilation rate	N/A CFM	N/A CFM
Minimum CFM50		3708 CFM50
Mechanical Ventilation Type	None	None

FREEZER

Approximate installed cost \$500

Annual Energy Savings

Approx. \$22

Savings to Investment Ratio

0.7

Why it matters

Old freezers can easily cost twice as much to operate as a new freezers. Replace your old freezer with a new ENERGY STAR model and be sure to recycle the old one (keeping it running in your garage or basement will use even more energy).

Replace Freezer

When its time to upgrade your freezer, consider replacing it with and Energy Star freezer which will run more efficiently and save you money!

Now & Goal

NOW **DETAILS** GOAL

Freezer

Freezer 1		
Name	Freezer 1	
ENERGY STAR	No	Yes
Usage	483.51 kWh/yr	354 kWh/yr
Model Year		2020

WINDOWS

Approximate installed cost

\$20,800

Annual Energy Savings

Approx. \$437

Savings to Investment Ratio

0.4

Why it matters

Adding storm windows, or replacing your current windows can save energy and help reduce drafts or solar gain.

Upgrade Windows

Consider replacing old single pane windows with new energy efficient Energy Star.

Now & Goal

DETAILS		NOW	GOAL

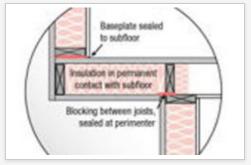
Windows

Window 1		
ENERGY STAR	No	Yes
U-Value	0.89 U Value	0.39 U Value
Solar Heat Gain Coefficient	0.64 SHGC	0.52 SHGC
Window Area: NE (Right)	102 ft ²	102 ft ²
Window Area: SE (Front)	340 ft ²	340 ft ²
Window Area: SW (Left)		
Window Area: NW (Back)	272 ft²	272 ft²
Exterior Treatment: NE (Right)	No Treatment	No Improvement
Exterior Treatment: SE (Front)	No Treatment	No Improvement
Exterior Treatment: SW (Left)	No Treatment	No Improvement
Exterior Treatment: NW (Back)	No Treatment	No Improvement

Insulate Frame Floor

FRAME FLOOR

Approximate installed cost \$400


Annual Energy Savings
Approx. \$15

Savings to Investment Ratio

0.8

Why it matters

Insulating floors above the garage and cantilevers can dramatically increase the comfort of bedrooms and other living spaces. This is done by drilling holes in the ceiling of the garage or floor of the cantilever and then filling the cavity between the floor joists with blown-in insulation.

A cantilevered floor is a floor that sticks out past the foundation or supporting wall below. It may be a first- or second-story bumpout, a bay window, or a room over an open porch. Floor joist bays that extend from the house out under the cantilevered floor are sometimes left unsealed and uninsulated by the builder, allowing outside air to flow through the home and conditioned air to escape.

Insulate floor above the garage:
Insulation between the garage and the living space as important as any insulation in an exterior wall. Most contractors will "drill and fill" the space between the garage and the living space above with cellulose.

Now & Goal

DETAILS

NOW

GOAL

Frame Floor

Floor Cavity Insulation	7 R Value	19 R Value
Floor Continuous Insulation		
Modeled Floor Area	500 ft ²	

REFRIGERATOR

Approximate installed cost \$1,000

Annual Energy Savings Approx. \$52

Savings to Investment Ratio

0.8

Why it matters

Old refrigerators can often cost twice as much to operate as a new refrigerator. Replace your old refrigerator with a new ENERGY STAR model and be sure to recycle the old one (keeping it running in your garage or basement will use even more energy).

Replace Refrigerator

When it is time to upgrade your refrigerator, consider replacing it with an Energy Star refrigerator which will run more efficiently and save you money!

Now & Goal

NOW **GOAL DETAILS**

Refrigerator

Refrigerator 1

0		
Name	Refrigerator 1	
ENERGY STAR	No	Yes
Usage	670.52 kWh/yr	348 kWh/yr
Model Year		2020

2020

DISHWASHER

Approximate installed cost \$500

Annual Energy Savings Approx. \$45

Savings to Investment Ratio

1.5

Why it matters

Old dishwashers can be energy and water hogs. If your dishwasher was made before 1994, or when your current dishwasher breaks or otherwise needs to be replaced, be sure to choose an ENERGY STAR model with the highest Energy Factor (EF) that's within your budget.

Upgrade Dishwasher

When it is time to upgrade your dishwasher, consider replacing it with an Energy Star refrigerator which will run more efficiently and save you money!

Now & Goal

DETAILS		NOW	GOAL
Dishwasher			
Dishwasher Installed?		Yes	Yes
ENERGY STAR		No	Yes
Energy Factor		0.43 EF	0.77 EF
Model Year			2020

Replace Doors or Add Storm Doors

DOORS

Approximate installed cost \$800

Annual Energy Savings
Approx. \$34

Savings to Investment Ratio

1

Why it matters

Adding storm door(s) or replacing your current exterior door(s) with insulated ones will help save energy and help reduce drafts.

Your home's exterior doors can contribute significantly to air leakage, and can also waste energy through conduction, especially if it's old, uninsulated, improperly installed, and/or improperly air sealed.

Weatherstripping can reduce the energy losses due to air leakage.

Upgrade to energy efficient insulated doors: When selecting doors for energy efficiency, it's important to first consider their energy performance ratings in relation to the local climate and your home's design

Adding a storm door can be a good investment if your existing door is old but still in good condition. However, adding a storm door to a newer, insulated door is not generally worth the expense, because you won't save much more energy. Never add a glass storm door if the exterior door gets more than a few hours of direct sun each day. The glass will trap heat against the entry door and could damage it.

Replace Doors or Add Storm Doors

DOORS

Approximate installed cost

\$800

Annual Energy Savings

Approx. \$34

Savings to Investment Ratio

1

Why it matters

Adding storm door(s) or replacing your current exterior door(s) with insulated ones will help save energy and help reduce drafts.

DETAILS	NOW	GOAL
Doors		
Door 1		
Area	21 ft²	21 ft²
ENERGY STAR	No	Yes
U Value	0.46 U Value	0.21 U Value
Door 2		
Area	21 ft²	21 ft²
ENERGY STAR	No	Yes
U Value	0.46 U Value	0.21 U Value
Door 3		
Area	21 ft²	21 ft²
ENERGY STAR	No	Yes
U Value	0.46 U Value	0.21 U Value

Seal & Insulate Duct work

DUCTS

Approximate installed cost \$5,000

Annual Energy Savings

Approx. \$242

Savings to Investment Ratio

0.7

Why it matters

If you have a forced air system for heating or cooling, sealing the connections and penetrations with mastic will ensure that all of the air makes it to where it was designed to go. This increases the efficiency of your heating and cooling system and improves comfort.

If ducts are located in an unconditioned space, such as a vented attic or vented crawlspace, they should be sealed and insulated to prevent heat loss due to air leaks and conduction and to provide some protection against harsh

Now & Goal

DETAILS NOW GOAL

Ducts

Hvac System 1		
Duct Location	Basement (unconditioned)	Basement (unconditioned)
Duct Insulation	No Insulation	R-8 Duct Insulation
Duct Leakage	30% - Very leaky	Seal to 6% Leakage
Duct Efficiency	83.18%	92.07%

WATER HEATER

Approximate installed cost \$2,400

Annual Energy Savings Approx. \$-562

Savings to Investment Ratio

0

Why it matters

Replace your water heater with a tankless model or a heat pump water heater to save energy and reduce the ability for dangerous Carbon Monoxide to leak into your home.

Upgrade Water Heater

Upgrade your water heater to a high efficiency unit. These can include tank-less on demand units or heat pump water heaters.

Now & Goal

WON GOAL **DETAILS**

Water Heater

Water Heater 1		
Fuel	Natural Gas	Electricity
Туре	Tank Water Heater	Heat Pump
ENERGY STAR		Yes
Energy Factor	56 EF	100 EF
Model Year		2020

Health & Safety

What's This?

These tests are recommended by the Building Performance Institute (BPI). They can help identify potential health and safety concerns in your home.

Your Massachusetts Home Scorecard

This scorecard compares home energy use and carbon footprint to an average home in MA, and shows improvements based on recommended technology.

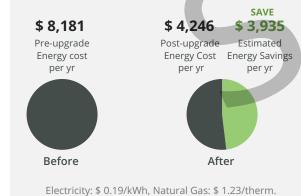
ABOUT

Address

123 ABC St., Holyoke, MA 01040

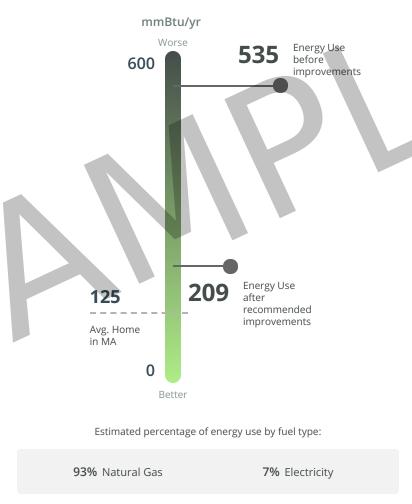
Year Built Sq. Footage 1900 3700

of Bedrooms Primary Heating Fuel

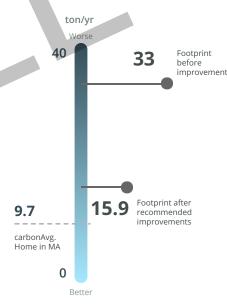

4 Natural Gas

Assessment Date Energy Specialist 05/05/2020 Jamie Overby

YEARLY ENERGY USE


Electricity Natural Gas
10,897 kWh 4,977 therms

YEARLY COSTS & SAVINGS*


HOME ENERGY USE

This shows the estimated total energy use (electricity and heating fuel) of your home for one year. The lower the energy use, the better!

HOME CARBON FOOTPRINT

This score shows the estimated carbon emissions based on the annual amounts, types, and sources of fuels used in your home. The lower the score, the less carbon is released into the atmosphere to power your home.

Estimated average carbon footprint (tons/yr):

87% Natural Gas 13% Electricity

^{*} Estimated costs and savings. Actual energy costs may vary and are based on many factors such as occupant behavior, weather and utility rates. Please see next page for more on the EPS calculation Projections for score improvements and energy savings are estimates based on implementing all of the recommended energy efficiency improvements. Ref# 164544.

MORE INFORMATION

ABOUT THE MASSACHUSETTS HOME SCORECARD

The Massachusetts Home Energy Scorecard (MA Scorecard) is a tool to assess a home's expected energy use, cost, and carbon footprint. A lower energy use generally means that a home has a smaller carbon footprint and lower energy costs. The MA Scorecard also allows for comparisons of one home's energy use and carbon footprint. This is because the energy use and carbon footprint are calculated without the influence of occupant behavior, which can vary depending on things like whether there are teenagers in the house who take long hot showers and often leave lights on when they are not in a room.

Home Energy Use

The Home Energy Use (HEU) calculation is based on a home's size, design, insulation levels, air leakage, heating and cooling systems, major appliances, lighting, hot water heating, and any electricity produced onsite by solar PV. The HEU number is "normalized" in the sense that occupant behavior, which can vary, is taken out of the calculation. A home's actual energy use will vary with number of occupants, occupant behavior, weather, and changes to the home.

For additional details on the recommended energy improvements and savings estimates for your home, please refer to your Home Energy Assessment Report.

USEFUL TERMINOLOGY

Btu

A Btu, or British Thermal Unit, is a measurement of the heat/energy content of fuel. mmBtu stands for one million Btus. One Btu ~ the energy produced by a single wooden match. One million Bts ~ the energy produced by 7 gallons of gasoline used in a typical car.

Carbon Footprint

The greenhouse gas emissions associated with a home's energy use impact the environment. The Carbon Footprint calculation is based on the carbon emissions for the annual amounts, types, and sources of fuels used in your home. Measurement is in tons of carbon dioxide per year (tons/year). One ton = 2000 miles driven by one car (typical 21 mpg car.)

For electricity, carbon emissions are based on electricity consumed onsite and the mix of fuel sources used in the region to generate that electricity at the time of this report.

For fossil fuel used in heating and hot water, carbon emissions are based on the therms of natural gas or gallons of oil or propane used in the home.

Average Home in Your Area

The "Average Home in Your Area" refers to the average energy use or carbon footprint of all the homes in Massachusetts before implementation of any energy improvements. The average may vary slightly over time as homes become more efficient due to improvements.

Rebates & Incentives

munihelps.org/rebates-incentives/holyoke-

	HG&E 2021 Rebates*
Item	Rebates Amounts & Requirements
Dishwasher	\$25 - Energy Star® or CEE Tier 1 or Higher
Room Air Conditioner	\$25 - Energy Star®
Dehumidifier	\$30 - Energy Star®
Air Purifier	\$40 - Energy Star®
Clothes Washer	\$50 - Energy Star® or CEE Tier 1 or Higher
Refrigerator	\$50 - Energy Star®/CEE Tier 1 or 2 \$75 - ES Most Efficient/CEE Advanced Tier
Electric Clothes Dryer	\$50 - Energy Star® \$250 - Energy Star®, Replacing Gas Dryer \$350 - Energy Star® Heat Pump, Replacing Gas Dryer
Electric Storage Tank or Solar Hot Water Heater	\$150 - Replacing Gas Water Heater \$300 - Replacing Oil or Propane Water Heater
Heat Pump Hot Water Heater (Electric Only)	\$300 - Energy Star® \$600 - Energy Star®, Replacing Gas Water Heater \$750 - Energy Star®, Replacing Oil or Propane
Central Air Conditioners	\$100/ton up to \$500 – SEER \geq 16, EER \geq 13 Previous ducted system required
Air Source Heat Pumps	\$250/ton up to \$1,000 – SEER \geq 18, EER \geq 12.5 and HSPF \geq 9
Blower Door Test & Air Sealing	50%, up to \$500
Duct Sealing	50%, up to \$500
Insulation	50%, up to \$2,000 - Attic, Wall, Floor, Basements & Pipe Insulation
Programmable Thermostat	50% up to \$50 - 7-Day Programmable Thermostat
Wi-Fi Smart Thermostat	50% up to \$125. Must be Enrolled in HG&E Connected Homes Program

HG&E 2021 Connected Homes Program*		
Item	Incentive Amount & Requirements	
Electric Hot Water Heaters	\$5/month - Qualifying Wi-Fi-enabled GE or Rheem models	
HVAC Seasonal Controls	\$5/month in winter, \$8/month in summer, Qualifying models only	
Wi-Fi Smart Thermostat	\$5/month in winter, \$8/month in summer, Qualifying models only	
Electric Vehicle Chargers	\$10/month plus a free Level 2 charger or a \$450 bill credit.	

HG&E 202	1 Residential Energy Conservation Program*
Item	Requirements
Gas Furnace	AFUE Rating ≥ 95%
Gas Steam Boiler	AFUE Rating ≥ 82%
Gas Hot Water Boilers	AFUE ≥ 90%, Outdoor Reset Control Required
Gas Combi Boiler/Water Heater	AFUE ≥ 95%
Gas Storage Water Heaters	Energy Star®
Indirect Water Heater	Attached to gas boiler with AFUE \geq 90%
Electric Hot Water Heaters	Must be converting from gas, oil or propane
Solar Hot Water Heaters	SRCC Certified
Heat Pump Hot Water Heaters	Energy Star®
Replacement Windows	Energy Star® Certified for Northern Climate Zone. Windows being replaced must be single-pane windows
Replacement Doors	Energy Star® Certified for Northern Climate Zone
Central Air Conditioners	SEER \geq 16, EER \geq 13, Previous ducted system required
Air Source Heat Pumps	SEER \geq 18, EER \geq 12.5, HSPF \geq 9
Electric Vehicle Charging Infrastructure	Must enroll in Connected Homes program. Costs covered: Service upgrades, equipment costs and installation costs
Blower Door Test & Air Sealing	
Duct Sealing	
Insulation	Attic, Wall, Floor, Basements & Pipe Insulation
Thermostat	7-Day Programmable Thermostat
Wi-Fi Smart Thermostat	Must be Enrolled in HG&E Connected Homes Program

*Please Note: Additional requirements apply for each incentive type listed above depending on equipment and program. Please visit www.hged.com/savehome for a complete list of eligibility requirements.

Connected Homes Program: Provides ongoing monthly incentives for qualifying Wi-Fi enabled smart devices

Residential Energy Conservation Program: Financial assistance at 0% interest offered for qualifying energy efficiency improvement projects

Questions? Contact Sophie Theroux, HG&E Energy Efficiency Coordinator. Email: stheroux@hged.com. Phone: (413) 265-8292

Tech Specs

Property Details

1900
3700 ft ²
No
8 ft
40 ft
60 ft
2
3
4
Single Family Detached
n: South East
Normal
Yes
2-car

Thermostat

Programmable Thermostat Installed:	No
Heating Setpoint High:	74 °F
Heating Setpoint Low:	62 °F

Heating & Cooling Heating Design Load:

Hvac: 1		
System Name:		Hvac System 1
Equipment Type:	Furnace wit	th standalone ducts
Upgrade action:	Replace v	with a newer model
Heating Energy Sou	rce:	Natural Gas
% of Total Heating L	₋oad:	100%
Heating Capacity:		100000 BTU/h
Heating System Effi	ciencv:	72 AFUE

Heating System Mo	odel Year: 1985
Duct Location:	Basement (unconditioned)
Duct Insulation:	No Insulation
Duct Leakage:	30% - Very leaky
Duct Efficiency:	83.18%

Appliances

ļ		2	•	1	I	r	1	ì	•	E		•				

Range Fuel Type:	Natural Gas
Oven: 1	
Oven Fuel Type:	Electricity
Clothes Dryer: 1	
Dryer Fuel Type:	Natural Gas

Clothes Washer

Type:	Top Load
Integrated Modified Energy Factor:	0.64 IMEF
ENERGY STAR:	No

Dishwasher

Dishwasher Installed?:	Yes
Energy Factor:	0.43 EF
ENERGY STAR:	No

Freezers

152796 Btu/hr

Freezer: 1

Name:	Freezer 1
Usage:	483.51 kWh/yr
ENERGY STAR:	No

Refrigerators

Refrigerator: 1

Name:	Refrigerator 1
Refrigerator Age:	22-24

Refrigerator Size:	16-18
ENERGY STAR:	No
Usage:	670.52 kWh/yr
Lighting	
% CFLs or LEDs:	26-50%
Total # of Light Bulbs:	100
# of CFLs:	0
# of LEDs:	38
# of Incandescents:	62
Doors	
Door: 1	
Type:	Wood
Area:	21 ft ²
ENERGY STAR:	No
U Value:	0.46 U Value

U Value:	0.46 U Value		
Door: 2			
Type:	Wood		
Area:	21 ft ²		
ENERGY STAR:	No		
U Value:	0.46 U Value		
Door: 3			
Type:	Wood		
Area:	21 ft ²		
ENERGY STAR:	No		
U Value:	0.46 U Value		

Exterior Walls

Wall: 1

Modeled Area:	3400 ft ²
Insulated?:	No
Siding:	Other

Tech Specs

Construction:	2x4 Frame
Cavity Insulation:	0 R Value
Continuous Insulation:	0 R Value

Attic & Vaulted Ceiling

Attic: 1

7100101	
Modeled Area:	1850 ft²
Insulation Depth:	4-6
Insulation	Fiberglass or Rockwool (batts or
Type:	blown)
Insulation:	12.5 R Value
Radiant Barrier?:	No
Has Knee Wall?:	Yes
Knee Wall Area:	600 ft ²
Knee Wall Cavity In	sulation: 7 R Value
Knee Wall Insulatio	n Fiberglass or Rockwool
Type:	Batt
Knee Wall Continuo	ous Insulation: 0 R Value
Cool Roof?:	No

Foundation - General

Foundation: Basement:	100%
Foundation Above Grade Heig	ht: 1.5 ft

Foundation - Basement

Modeled Basement F	loor Area:		1350 ft ²
Basement Wall Insula	ition:	None or I	Bare Walls
Basement Heating:	None or l	J ndesired	Incidental
Basement Cooling:	None or l	Jndesired	Incidental
Basement Ceiling Cav	ity Insulati	ion:	0 R Value
Basement Ceiling	Fib	erglass or	Rockwool
Cavity Insulation Type	2:		Batt
Basement Ceiling Cor	ntinuous Ir	sulation:	0 R Value

Frame Floors

Modeled Floor Area:	500 ft ²
Modeled Floor Area.	500 IL-

Floor Cavity Insulation:	7 R Value
Floor Cavity Insulation	Fiberglass or Rockwool
Type:	Batt
Floor Continuous Insulation:	0 R Value

Windows

_	_		
\//i	nd	ow:	•
vvi	пu	UVV.	

Window Area: NE (Right):	102 ft ²
Window Area: SE (Front):	340 ft ²
Window Area: SW (Left):	0 ft ²
Window Area: NW (Back):	272 ft ²
Type:	Single pane
Frame:	Wood or metal clad
ENERGY STAR:	No
U-Value:	0.89 U Value
Solar Heat Gain Coefficient:	0.64 SHGC
Exterior Treatment: NE (Right):	No Treatment
Exterior Treatment: SE (Front):	No Treatment
Exterior Treatment: SW (Left):	No Treatment
Exterior Treatment: NW (Back):	No Treatment

Air Leakage

Blower Door Test Performed:	Estimate
Blower Door Reading:	13680 CFM50
Conditioned Air Volume:	31450 ft ³
Wind Zone:	2
N-Factor:	14.99
Equivalent NACH:	1.74 NACH
Effective Leakage Area:	768.53 in ²
Equivalent ACH50:	26.1 ACH50
Kitchen Fan:	0 CFM
Bathroom Fan 1:	0 CFM
ASHRAE 62.2 Required mechanical	N/A
ventilation rate:	CFM

Mechanical Ventilation Type:	lone
------------------------------	------

Water Heating

Water Heating: 1

Fuel:	Natural Gas
Type:	Tank Water Heater
Age:	16-20
Location:	Garage or Unconditioned Space
Temperature Settir	ngs: Very High (150+ F)
Energy Factor:	56 EF

Pool & Hot Tub

Pool:	Yes
Pump Type:	Single Speed
Pump Horsepower:	0.5
Pump Annual Frequency:	365 Days/Year
Pump Daily Frequency:	4.6 Hours/Day
Variable Speed Turnover:	1
Hot Tub:	No

PV

rv. i	
Has PV?:	No

Utility Bills

Electric

Electric Utility Provider	Holyoke Gas &
Name	Electric
Electric Account Number	12345678910

Fuel

Fuel Utility Provider Name	Holyoke Gas & Electric
Fuel Account Number	01987654321

Contact Information

Jamie Overby

Tech Specs

Center for EcoTechnology 320 Riverside Dr. 1-A Northampton, MA 01062 jamie.overby@cetonline.org

About This Report

Report Date: October 28, 2021

Job ID: 164544

Holyoke Gas & Electric HELPS Energy Audits

Report & modeling software: Snugg Pro™ 5.0

Glossary

- Annual Fuel Utilization Efficiency (AFUE) The measure of seasonal or annual efficiency of a residential heating furnace or boiler. It takes into account the cyclic on/off operation and associated energy losses of the heating unit as it responds to changes in the load, which in turn is affected by changes in weather and occupant controls.
- **Annualized Return** The return an investment provides over a period of time, expressed as a time-weighted annual percentage. This is the equivalent annual interest rate you would get if you put the same amount of money spent on the energy upgrade into a savings account.
- **Asbestos** Asbestos is a mineral fiber that has been used commonly in a variety of building construction materials for insulation and as a fire-retardant, but is no longer used in homes. When asbestos-containing materials are damaged or disturbed by repair, remodeling or demolition activities, microscopic fibers become airborne and can be inhaled into the lungs. where they can cause significant health problems.
- British Thermal Unit (Btu) The amount of heat required to raise the temperature of one pound of water one degree Fahrenheit; equal to 252 calories.
- Carbon Monoxide (CO) A colorless, odorless but poisonous combustible gas with the formula CO. Carbon monoxide is produced in the incomplete combustion of carbon and carbon compounds such as fossil fuels (i.e. coal, petroleum) and their products (e.g. liquefied petroleum gas, gasoline), and biomass.
- **Cashflow** When financing energy efficiency improvements, cashflow is the difference between the average monthly energy savings and the monthly loan payment.
- Combustion Appliance Zone (CAZ) A contiguous air volume within a building that contains a combustion appliance such as furnaces, boilers, and water heaters; the zone may include, but is not limited to, a mechanical closet, mechanical room, or the main body of a house, as applicable.
- Compact Fluorescent Light bulb (CFL) A smaller version of standard fluorescent lamps which can directly replace standard incandescent lights. These highly efficient lights consist of a gas filled tube, and a magnetic or electronic ballast.

- Cubic Feet per Minute (CFM) A measurement of airflow that indicates how many cubic feet of air pass by a stationary point in one minute.
- Carbon Dioxide (CO2) A colorless, odorless noncombustible gas that is present in the atmosphere. It is formed by the combustion of carbon and carbon compounds (such as fossil fuels and biomass). It acts as a greenhouse gas which plays a major role in global warming and climate change.
- **Energy Efficiency Ratio (EER)** The measure of the energy efficiency of room air conditioners; cooling capacity in Btu/hr divided by the watts consumed at a specific outdoor temperature.
- **Energy Factor (EF)** The measure of efficiency for a variety of appliances. For water heaters, the energy factor is based on three factors: 1) the recovery efficiency, or how efficiently the heat from the energy source is transferred to the water; 2) stand-by losses, or the percentage of heat lost per hour from the stored water compared to the content of the water: and 3) cycling losses. For dishwashers, the energy factor is the number of cycles per kWh of input power. For clothes washers, the energy factor is the cubic foot capacity per kWh of input power per cycle. For clothes dryers, the energy factor is the number of pounds of clothes dried per kWh of power consumed.
- Heating Seasonal Performance Factor (HSPF) The measure of seasonal efficiency of a heat pump operating in the heating mode. It takes into account the variations in temperature that can occur within a season and is the average number of Btu of heat delivered for every watt-hour of electricity used.

Heat Recovery Ventilator (HRV) / Energy Recovery Ventilator (ERV)

- A device that captures the heat or energy from the exhaust air from a building and transfers it to the supply/fresh air entering the building to preheat the air and increase overall heating efficiency while providing consistent fresh air.
- **Light Emitting Diode (LED) Lighting** An extremely efficient semiconductor light source. LEDs present many advantages over incandescent light sources including lower energy consumption, longer lifetime, improved physical robustness, and smaller size.

- Modified Internal Rate of Return (MIRR) This is your return on investment. Roughly speaking, if you invested the same amount of money for this project (listed on this report as the total cost) into a bank account, your equivalent interest rate from all of the energy savings would be the MIRR.
- **N-Factor** A factor of how susceptible your house is to wind, influenced by weather patterns, location, and the number of floors in the home. Used in the calculation of NACH.
- Natural Air Changes per Hour (NACH) The number of times in one hour the entire volume of air inside the building leaks to the outside naturally.
- Payback Period The amount of time required before the savings resulting from your system equal the system cost.
- **R-Value** A measure of the capacity of a material to resist heat transfer. The R-Value is the reciprocal of the conductivity of a material (U-Value). The larger the R-Value of a material, the greater its insulating properties.
- **Radon** A naturally occurring radioactive gas found in the U.S. in nearly all types of soil, rock, and water. It can migrate into most buildings. Studies have linked high concentrations of radon to lung cancer.
- **Rim Joist** In the framing of a deck or building, a rim joist is the final joist that caps the end of the row of joists that support a floor or ceiling. A rim joist makes up the end of the box that comprises the floor system.
- Seasonal Energy Efficiency Ratio (SEER) A measure of seasonal or annual efficiency of a central air conditioner or air conditioning heat pump. It takes into account the variations in temperature that can occur within a season and is the average number of Btu of cooling delivered for every watt-hour of electricity used by the heat pump over a cooling season.
- Savings to Investment Ratio (SIR) A ratio used to determine whether a project that aims to save money in the future is worth doing. The ratio compares the investment that is put in now with the amount of savings from the project.

